
HOMEWORK 13

Due date:
Exercise 8.2, page 474 of Artin’s book.

Exercise 2.1, 4.3, 5.1, page 408-409 of Artin’s book.

For the definition of primitive elements, see below.
Show that there is one c (actually there are infinitely many c) such that γ := α+ cβ is a primitive

element.

1. Algebraic closure

Problem 1. Let F be a field and F , F
′
be two algebraic closure of F . Show that there is an

isomorphism ϕ : F → F
′
such that ϕ(a) = a,∀a ∈ F.

Hint: Consider the set P of all pairs (E, ι), where E is an intermediate field of F and F , namely,

F ⊂ E, and ι : E → F
′
is an F -homomorphism. Define a partial order on P by

(E, ι) ≤ (E1, ι1) if and only if E ⊂ E1 and ι1|E = ι.

The set P is nonempty because it contains (F, F ↪→ F
′
). Show P is contains a maximal element

(E, ϕ) using Zorn’s lemma. Then show E = F and ϕ : E → F
′
is an isomorphism.

Problem 2. Show that every algebraically closed field is infinite.

We know that every finite field is of the form Fq and over Fq there is a quadratic extension.
This means that there is an irreducible quadratic irreducible polynomial f ∈ Fq[x]. Thus Fq is
not algebraically closed. Try to give a very direct proof of the above problem without using the
structures of finite fields.

Let p be a prime integer and q = pr. We consider the finite field Fq with q elements. Let a, b be
two positive integers such that a|b. It is known that Fqa ⊂ Fqb . In particular, we can consider the
following

Fq ⊂ Fq2! ⊂ Fq3! ⊂ Fq4! ⊂ · · · ⊂ Fqn! ⊂ . . . .

Consider

Fq = ∪n≥1Fqn! .

Problem 3. Show that Fq is an algebraic closure of Fq.

2. Primitive element theorem

Theorem 2.1 (Primitive element theorem). Let E/F be a finite separable extension. There there
exists an element γ ∈ E such that E = F (γ).

For a proof of this fact when characteristic of F is zero, see Theorem 15.8.1, page 462 of Artin’s
book. Such an element γ is called a primitive element for the extension E/F . With this theorem,
many proofs in Galois theory could be simplified. Try to read Artin’s book and see how this theorem
is used in the proof of many theorems. We will prove this theorem in the following problems.

Problem 4. Let F be a finite field and E/F be a finite extension, show that there exists an element
γ such that E = F (γ).

This is Exercise 8.1, page 474 of Artin’s book. After this problem, to prove Theorem 2.1, it
suffices to consider the case when F is infinite.

Problem 5. Let F be an infinite field and E = F [α, β] be a finite extension over F such that β is
separable over F . Then there exists an element γ ∈ E such that E = F (γ).
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In the above problem, we don’t assume that α is separable over F . The proof is essentially the
same with the characteristic zero case in Theorem 15.8.1, page 462 of Artin’s book. Here are some
hints anyway. Consider elements of the form

α+ cβ, c ∈ F.

Since F is infinite, there are infinite such elements. Let f (resp. g) be the minimal polynomial
of α (resp. β). The assumption says that g has no multiple roots. Let α1 = α, α2, . . . , αs and
β1 = β, . . . , βt be roots of f and g in an algebraic closure F . Show that one choose a c ∈ F such
that

αi + cβj ̸= α+ cβ, unless i = j = 1.

Let γ = α + cβ. Show that E = F [γ]. The rest of the proof is identical to the proof in the
characteristic zero case.

Problem 6. Prove Theorem 2.1.

3. A little bit algebraic number theory

Problem 7. Consider the ring R = Z[
√
2]. Show that for any n ∈ Z, (3 + 2

√
2)n ∈ R×. Thus R×

is infinite.

We have defined two discriminant now. Recall that, if f ∈ F [x] we have defined

disc(f) =
∏

1≤i<j≤n

(βi − βj)
2,

where {β1, . . . , βn} is the set of all roots of f in an algebraic closure.
Let E/F be a field extension and let B = {α1, . . . , αn} be an ordered basis of E/F , we have

defined
∆(B) = ∆(α1, . . . , αn) = det[ψ]B,

where ψ : E×E → F is the bilinear form ψ(α, β) = trE/F (αβ), and [ψ]B is the matrix of the bilinear
form with respect to B. More precisely,

[ψ]B =

ψ(α1, α1) ψ(α2, α1) . . . ψ(αn, α1)
. . . . . . . . . . . .

ψ(α1, αn) ψ(α2, αn) . . . ψ(αn, αn)

 .
A different way to describe the matrix is as follows. Let [α]B be the coordinate of α with respect to
the ordered basis B, then

ψ(α, β) = [β]tB[ψ]B[α]B.

Think about how [ψ]B changes if we change basis. We learned this in our linear algebra course.
Check page 360-363 of Hoffman-Kunze.

Problem 8. Let β ∈ Q be an algebraic element over Q. Let µβ be the minimal polynomial of β over
Q. Show that

∆(1, β, . . . , βn−1) = disc(µβ),

where n = deg(µβ).

Hint: this follows from a matrix calculation which roughly appeared in the previous HW and also
in linear algebra when we talked about bilinear forms, see . Let σi : Q[β] → C be the embeddings
defined by µβ (namely, σi(β) is a root of µβ for each i). Let B =

{
1, β, . . . , β−1

}
be the basis of

Q[β]/Q. Then show that det([ψ]B) = det(A)2, where A is the matrix (σi(β
j))1≤i,j≤n = (βj

i )1≤i,j≤n,
where βi = σi(β), which is a root of µβ .

Let K be an algebraic number field, i.e., K/Q is an extension of degree n. Let OK be the ring
of integers of K. Let B = {β1, . . . , βn} be an integral basis of OK and let α ∈ OK . Then we know
that OK = Zβ1 + · · ·+ Zβn is a free abelian group of rank n. Moreover, we know that

|∆(β1, . . . , βn)| ∈ Z>0

is minimal. This number is thus independent on the choice of the basis B and we denote it by
disc(OK).
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Problem 9. Let K be an algebraic number field and let OK be the ring of integers of K. Suppose
that rank(OK) = n. Let B′ = {α1, . . . , αn} ⊂ OK . Consider the sub abelian group (submodule as an
Z module)

Z[B′] =
{∑

aiαi : ai ∈ Z, 1 ≤ i ≤ n
}

of OK (rank as a free abelian group). Suppose ∆(α1, . . . , αn) ̸= 0. Show that Z[B′] is also a free
abelian group of rank n and OK/Z[B′] is finite. Moreover, show that

|∆(B′)| = disc(OK)|OK/Z[B′]|2.
In particular, |∆(B′)| is also an integer. Moreover, if |∆(B′)| is square free, then OK = Z[B′],
namely, B′ is an integral basis.

This is an application of the structure theorem of finitely generated abelian group.

Problem 10. Let α ∈ C be a root of x3 − x − 1 ∈ Q[x]. Consider the field F = Q[α]. Show that
1, α, α2 is an integral basis of OF , namely, OF = Z[α] =

{
a+ bα+ cα2 : a, b, c ∈ Z

}
. Here OF is

the ring of integers of F .

Hint: Compute ∆(1, α, α2) and then use the above problem.
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